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Abstract

Functional MRI (fMRI) carries the potential for non-invasive measurements of brain
activity. Typically what are referred to as activation images are actually thresholded
statistical parametric maps. These maps possess large inter-session variability. This
is especially problematic when applying fMRI to pre-surgical planning because of
a higher requirement for intra-subject precision. The purpose of this study was to
investigate the impact of residual movement artefacts on intra-subject and inter-
subject variability in the observed fMRI activation. Ten subjects were examined
using three different word-generation tasks. Two of the subjects were examined 10
times on 10 different days using the same paradigms. We systematically investigated
one approach of correcting for residual movement effects: the inclusion of regressors
describing movement-related effects in the design matrix of a General Linear Model
(GLM). The data were analysed with and without modeling the residual movement
artefacts and the impact on inter-session variance was assessed using F-contrasts.
Inclusion of motion parameters in the analysis significantly reduced both the intra-
subject as well as the inter-subject-variance.
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Introduction

In a legendary study by McGonigle et al. (2000) the size of the activated area
passing a fixed statistical threshold was shown to vary dramatically over 33
examinations of the same subject. This, and other studies, has lead to the
common interpretation that fMRI has a large inter-session variance, not only
when sessions span over different subjects, but even when the different ses-
sions are examinations of the same subject. While McGonigle et al. (2000)
emphasised that inter-session variation should not be assessed on thresholded
images as the result will be highly threshold dependent, they did not provide
information on the statistical significance of the task-by-session interaction.
The presence of a significant task-by-session interaction is problematic in sev-
eral ways. In the field of non-clinical brain mapping, using second level group
analysis, there will be a decrease of sensitivity due to increased unexplained
variance. When fMRI is used for presurgical planning. False negative activa-
tions might lead to inadvertant surgical removal of normal tissue, resulting in
greater disability. Conversly, false positive activations could lead to incomplete
resection of a tumour.

The potential contributors to the intra-subject variability are numerous (Gen-
ovese et al., 1997). Compared to the number of choices available during fMRI
acquisition and preprocessing, only a limited number of studies have inves-
tigated the impact of acquisition parameters and pre-processing methods on
the within-subject sessional variation in the fMRI signal.

Slice-orientation, as reported by Gustard et al. (2001), had a non-significant
impact on the reproducibility of the fMRI signal when isotropic voxels and a
simple motor paradigm were used. Spatial normalisation was shown to have
a significant effect on the reproducibility of visual activation by some (Swal-
low et al., 2003), but not others (Miki et al., 2000). In two studies, the effect
of including neighbourhood information on the intra-subject variability was
investigated. Intra-subject variability was decreased when larger smoothing
kernels were used (Rombouts et al., 1998) or when the four nearest in plane
neighbours were included in the analysis (Yetkin et al., 1996). These results
are in agreement with what has also been observed for inter-subject variability
(White et al., 2001; Shaw et al., 2003). Unfortunately reduction of variability
by smoothing comes at the cost of reduced spatial resolution. Physiological
noise correction (Hu et al., 1995) was found to increase the test-retest repro-
ducibility at 4T (Tegeler et al., 1999).

Motion artefacts are some of the most important contributors to fMRI signal,
unrelated to neural activity (Hajnal et al., 1995). Much of their effects can
be removed by realignment but residual movement artefacts that are not ac-
counted for by standard rigid-body realignment still exist. A commonly used
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method (Rowe & Passingham, 2001; Salek-Haddadi et al., 2003) for correcting
these residual movement artefacts is to include movement-parameters in the
design matrix of a general linear model. If only the raw movement parame-
ters (translations and rotations) are included, it is assumed that the effects
are linear, and that movement in opposite directions result in opposite signal
changes. This is not always the case. Consider for example the 1- dimensional
case of a grey matter voxel lying between two white matter voxels. In this case
movement of the voxel in either direction will lead to a signal increase. Using a
Volterra expansion of the movement parameters, higher order and differential
effects can also be modeled, including spin history effects (Friston et al., 1996).
In the case of stimulus locked motion the inclusion of movement parameters in
the design matrix is likely to remove not only residual movement artefacts but
true activation as well, since these effects are no longer uniquely associated
with the paradigm regressor.

The purpose of the present study was to investigate the extent to which the
inter-session variability of the task-related fMRI activation could be improved
by modeling residual motion, by inclusion of a Volterra expansion of move-
ment parameters in the general linear model. In contrast to previous stud-
ies which have used coincidence maps, multi-panel displays or other strongly
threshold dependent measures, we formally assessed the significance of the
task-by-session interaction using F-contrasts.

Materials and methods

Experimental setup

Ten healthy volunteers (labelled A-J) were examined with three tasks of overt
word generation: Categorical (generation of words from a specific category),
Alphabetical (generation of words starting with a specific letter) and Semantic
(generation of verbs associated with a specific noun). Two of the subjects
(A&B) were examined 10 times. The alphabetical and categorical paradigms
were presented in a boxcar design with active and baseline condition lasting 44s
each. In the semantic paradigm, baseline and activation conditions each lasted
20s. Using a 1.5T Siemens Vision scanner and a gradient echo EPI, a set of 104
volumes (20 slices (interleaved acquisition), matrix:128×128, resolution (xyz):
1.56mm×1.56mm×5mm, TR=5.5s, TE=66ms, flipangle=90◦) was acquired
in each of the three paradigms.
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Data analysis

Pre-processing and data analysis was carried out using the SPM package
(http://www.fil.ion.ucl.ac.uk/spm/). Data were realigned (6-parameter rigid
body) (Friston et al., 1995), spatially normalised (Ashburner & Friston, 1999)
and resampled to the EPI template and spatially smoothed using a 3D Gaus-
sian kernel (FWHM=5mm). Residual movement effects were then modeled as
described in Friston et al. (1996) by including a Volterra expansion of the 6
rigid-body motion parameters as nuisance covariates in the design matrix of a
GLM (Worsley & Friston, 1995) implemented in SPM2. The Volterra expan-
sion consisted of linear and quadratic effects of the 6 movement parameters
belonging to each volume, and also included spin-history effects as linear and
quadratic effects of motion parameters in the previous volume, giving a total
of 24 regressors in addition to those describing the paradigm and baseline.

Nine different sets of images (Subject A: Categorical, Alphabetical and Se-
mantic; Subject B: Categorical, Alphabetical and Semantic; 10 Subjects: Cat-
egorical, Alphabetical and Semantic) were analysed with two types of models
each, giving 18 analyses in all. Both types of models were implemented as
multi-session design matrices, and both modelled serial correlations as a first
order auto regressive (AR(1)) process (Friston et al., 2002), and low frequency
drifts as a discrete cosine set (128s cut-off).

In the first type of model, only the paradigm regressor and session specific
baseline (mean value) were included in the design matrix (size 1040×(10×2)).
In the second type of model, the Volterra expanded motion parameters (24 re-
gressors per session) were also included in the design matrix (size 1040×(10×(2+24))).
The expanded motion parameters were specified as covariates of no interest
in the design matrix in SPM2. This was necessary because SPM2 estimates
a global AR(1) process within a mask determined by the effects of interest.
As the temporal autocorrelation has spatial structure (Worsley et al., 2002,
Figure 2) with much higher temporal correlation in grey matter than in white
matter, specifying all regressors as being of interest could bias the global
AR(1) estimate toward less correlation, as white matter voxels will also show
correlation with the movement parameters.

For each of the 18 analyses a t-contrast per session was used to test for the ef-
fect of the paradigm, and an F-contrast was used to test for the intra- or inter-
subject variation. The F-test was constructed so that each of the 10 rows (SPM
notation) in the F-contrast tested for the deviation of a specific session (or
subject) from the mean of the other 9 sessions/subjects. For example, the first
10 columns (spm conman notation) of the third row in the F-contrast of a model
without motion parameters reads [−1,−1, +9,−1,−1,−1,−1,−1,−1,−1]. This
contrast can be interpreted as a test for significant task-by-session interaction.
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To determine the typical activation for each of the 18 analyses a mixed effect
analysis was performed. As opposed to a typical two-level random effects anal-
ysis (Holmes & Friston, 1998), the mixed effect analysis acknowledges that the
design may be unbalanced. This would happen if the correlation of movement
parameters with the paradigm differs between sessions. The mixed effect anal-
ysis is implemented in SPM2 with the program spm mfx and is described in
(Friston et al., 2005).

The variance maps (F-tests) were thresholded at p=0.05, the family-wise er-
ror rate (FWE) was controlled using Gaussian Random Field Theory (GRF)
(Worsley et al., 1996). The t-maps for the individual sessions were thresholded
at p=0.05 corrected using false discovery rate (FDR) (Benjamini & Hochberg,
1995) which has adaptive features, and does not depend on heavy smoothing.
This choice was motivated by the demands of presurgical planning, a typical
example of single subject fMRI, in which false negatives are of major concern.
As the FWE thresholding based on GRF may be too conservative for typical
second-level analysis with low degrees of freedom (Nichols & Hayasaka, 2003),
we used FDR thresholding only for the mixed effect analysis.

Results

This study produced 18 separate analyses. We are therefore only able to show
detailed results from a subset of these analyses, and the remainder will only
be commented on.

Intra-subject variance

In 6 of 6 intra-subject analyses (the three tasks in subjects A and B separately)
inclusion of motion parameters reduced the inter-session variation over 10
sessions (see Figure 1 row 1 and 2). The resulting thresholded activation maps
were correspondingly clearer with more focal activation patterns. For subject
B in particular, inter-session variability was still visible after the correction,
but this was restricted to areas in the prefrontal and temporal lobe that are
typically involved in word generation.

Inter-subject variance

In all inter-subject analyses, inclusion of the motion parameters also reduced
the inter-session variance significantly (see Figure 1 third row). Remaining
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voxels with significant inter-session variability were mainly located in areas
typically involved in word generation and also found active in the mixed effects
activation map (not shown).

Impact on activation maps

As a representative example of activation maps from individual sessions we
show in Figure 2a how the activation maps from the individual sessions of
subject A, alphabetical paradigm, change when movement parameters are in-
cluded in the design matrix. These maps should be compared with typical
activation patterns (over 10 sessions of the Alphabetical task for Subject A)
found in the maps from the mixed effect analysis shown in Figure 2b. From
Figure 2a (simple) it is clear that examinations 5 and 7 contribute substan-
tially to the inter-session variance map in Figure 1 first row, with areas that
neither reflect typical language areas nor activation typical to the specific
subject. This widespread “activation” is clearly removed when movement ef-
fects are modelled. In examinations 3 and 8 (Figure 2a) the language-related
frontal and temporal cortex activation seen in the FDR thresholded maps dis-
appear when movement effects are modelled. This indicates stimulus locked
motion. Language areas in the maps from the remaining sessions are rela-
tively unchanged when movement parameters are included. After modeling of
movement related effects, the language related areas seen in FDR thresholded
images from single sessions are very similar to the results of the mixed-effect
analysis over multiple sessions in Figure 2b.

Discussion

McGonigle et al. (2000) highlighted the problem of large intra-subject vari-
ability in fMRI. We have here shown that residual movement artefacts are
indeed a large part of the problem. Additionally, we have presented a method
for explicitly assessing the significance of inter-session variance by the use of
an F-contrast.

In the present study we modelled residual movement effects by including a
Volterra expansion of motion-parameters in the design matrix of a GLM. Using
this method we were able to assign a large proportion of the inter-session
variation observed in fMRI to differences in movement during scanning. This
effect was large both within and between subjects. This means that all types of
inter-session variance in activation patterns are affected by residual movement
artefacts, even though one might expect the effect to be more pronounced in
the same subject. When the movement parameters are included in the model,
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the activation image from a single examination resembles the mixed effect
activation image from a single subject examined 10 times. This suggest that a
more typical response for a given subject from a single session may be achieved
by including movement parameters in the design matrix.

The difference in movement patterns between sessions means that the study
is no longer balanced at the first level. A typical two-level random effects
analysis is therefore in principle not optimal. Our results therefore suggest the
importance of a true mixed effect analysis in multi-subject studies.

Our results also show the importance of careful model selection in single sub-
ject analyses such as presurgical mapping. At the risk of biased model se-
lection, it may be justified to analyse the data with several different models
e.g. with and without movement parameters included in the design matrix. If
correction for movement effects abolishes what was thought to be task-related
activation then this suggests the presence of stimulus locked motion, reducing
the validity of the conclusions. The best solution would be to repeat the exper-
iment. If, on the other hand, modeling of movement effects reduces spurious
activations or leaves the activation map unchanged, it increases confidence in
the activation images.

The inclusion of movement parameters in the design matrix is only one way to
correct for residual movement artefacts. The method has been used in many
papers already (Friston et al., 1996; Rowe & Passingham, 2001; Salek-Haddadi
et al., 2003), but the impact of these regressors has, however, so far not been
studied systematically in the context of inter-session variability.

In this study the images were smoothed with a narrow Gaussian kernel. This
could lead to over-conservative estimates of FWE correction using GRF, and
larger inter-session variance. However, it is the preferred strategy when fMRI is
performed in the context of pre-surgical mapping to preserve spatial resolution.
While the FDR approach for thresholding in a simple model can be liberal,
we find that the combination of FDR thresholding and inclusion of movement
parameters in the design matrix led to more consistent and representative
activation images for a given subject.

One must consider other sources of inter-session variation. For instance, we
did not in the present study formally assess the effects of session-to-session
variation in task performance, which could in part explain the inter-session
variation observed in the language areas that remained even after modeling
residual movement effects. Furthermore, differences in cardiac and respiratory
induced noise and true differences in the BOLD signal e.g. due to different
levels of hormones or drugs such as caffeine (Mulderink et al., 2002) may also
contribute to the inter-session variance in fMRI.

In conclusion, a significant proportion of the inter-session variability of task-
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related activation can be explained by differences in movement patterns. The
inclusion of movement parameters is therefore highly recommended. In the
context of single-subject studies such as pre-surgical mapping, the validity of
an fMRI activation can be assessed by analysis of the data with and with-
out inclusion of movement parameters in the design matrix. Activation that
persists after modeling movement effects can be considered more valid than
activation that disappears after modeling movement.
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Fig. 1. F-test for inter-session variance in fMRI activation. The multi panel dis-
play shows maximum intensity saggital projections of the inter-session variation in
task-related activity observed during the three different language paradigms (Alpha-
betical, Categorical and Semantic) across the 10 repeated examinations of subject A
and B and across all 10 subjects. For each task the left hand column (Simple) shows
results from the model without movement parameters, and the right hand column
(Corrected) shows results from the model with movement parameters included. All
maps are thresholded at p=0.05, corrected for multiple testing, controlling FWE
using GRF.
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Fig. 2. t-test for effect of alphabetical word generation. The multi panel display (a)
shows the thresholded activation images (transversal maximum intensity projec-
tions) from subject A through the 10 different sessions of the Alphabetical paradigm,
without (simple) and with (corrected) modeling of residual movement artefacts. Fig-
ure (b) shows the results of the the mixed effect analysis of subject A, alphabetical
task, without (Simple) and with (Corrected) correction for residual movement arte-
facts. All maps are thresholded adaptively at p=0.05, corrected for multiple testing,
controlling FWE weakly with FDR.
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